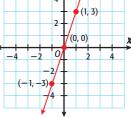
Section Overview

Lesson 7-3

Graphing Linear Functions

Why? Students should recognize that the rule that describes a number pattern also describes the corresponding function and its graph. The graphs of linear equations are straight lines.


To graph a linear function, start by making a table of ordered pairs. Then plot each ordered pair on a coordinate plane. Connect the points with a straight line.

Input: <i>x</i>	Output: y	
-2	3(−2) = −6	
-1	3(-1) = -3	
0	3(0) = 0	
1	3(1) = 3	
2	3(2) = 6	

4 - /

Graph of y = 3x

Lesson 7-4

Lesson 7-5

Graphing Quadratic Functions

Why?) Students must understand how to use function tables to graph functions.

The graph of a quadratic function is a parabola.

Function:	$\mathbf{y} = \mathbf{x}^2$
-----------	-----------------------------

Output: y

 $(-2)^2 = 4$

 $(-1)^2 = 1$

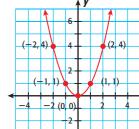
 $(0)^2 = 0$

 $(1)^2 = 1$

 $(2)^2 = 4$

Input: x

-2

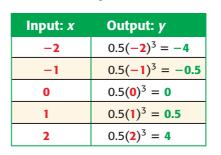

-1

0

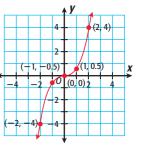
1

2

Graph of $y = x^2$



Cubic Functions


Why? Cubic functions describe numerous real-world situations, such as population growth or the change in volume of a container that results from a change in the container's side length.

All cubic functions have graphs with the same basic shape.

E			A E3
Fun	ςτιοη:	: v =	0.5 <mark>x</mark> ³

